МИНОБРНАУКИ РОССИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» (ФГБОУ ВПО «ВГУ»)

УТВЕРЖДАЮ

И.о. заведующего кафедрой программного обеспечения и администрирования информационных систем Барановский Е.С

27.03.2025 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

Б1.О.13 Цифровая обработка сигналов

1. Код и наименование направления подготовки:

02.04.03 Математическое обеспечение и администрирование информационных систем

2. Магистерская программа: Управление проектированием и разработкой информационных систем

3. Квалификация (степень) выпускника: магистр

4. Форма обучения: очная

5. Кафедра, отвечающая за реализацию дисциплины:

программного обеспечения и администрирования информационных систем

6. Составители программы: Крыжко И.Б., к.т.н, с.н.с.

7. Рекомендована: НМС факультета от 17.03.2025, протокол № 6

9. Цели и задачи учебной дисциплины:

Цель изучения дисциплины: изучение математических методов описания сигналов в компьютерной среде, выработка навыков поиска, формулировки и решения актуальных проблем фундаментальной и прикладной информатики и информационных технологий.

Задачи учебной дисциплины: изучение методов дискретизации сигнала и очистки сигнала от шумов, решение типовых задач с учетом основных понятий и общих закономерностей, применение системного подхода и математических методов для формализации прикладных задач, осуществление выбора современных математических инструментальных средств для обработки изучаемых данных в соответствии с поставленной задачей, анализ и интерпретация полученных результатов.

- **10. Место учебной дисциплины в структуре ООП:** учебная дисциплина относится к обязательной части Блока 1.
- 11. Планируемые результаты обучения по дисциплине/модулю (знания, умения, навыки), соотнесенные с планируемыми результатами освоения образовательной программы (компетенциями выпускников):

Код	Название компетенции	Код(ы)	Индикатор(ы)	Планируемые результаты обучения	
ОПК-	компетенции	ОПК-	Решает типовые задачи	знать:	
1	Способен находить, формулировать и	1.1	с учетом основных понятий и общих	-принципы изучения сложных систем	
	решать актуальные		закономерностей,	-способы построения	
	проблемы фундаментальной		сформулированные в рамках базовых	математических моделей реальных систем	
	и прикладной		дисциплин математики,		
	информатики и		информатики и	уметь:	
	информационных технологий		естественных наук	-осуществлять информационный поиск с использованием открытых	
		ОПК-	Применяет системный	источников информации	
		1.2	подход и	-систематизировать и обобщать	
			математические методы	информацию по теме исследования,	
			для формализации		
			прикладных задач	владеть:	
		0016	0	- специализированными	
		ОПК-	Осуществляет выбор	программными продуктами, ориентированными на	
		1.3	современных математических	использование в соответствующей	
			инструментальных	предметной области	
			средств для обработки	- навыками оформления	
			изучаемых данных в	результатов научно-	
			соответствии с	исследовательской работы	
			поставленной задачей,		
			анализирует,		
			интерпретирует		
			полученные результаты		

12. Объем дисциплины в зачетных единицах/часах в соответствии с учебным планом — 5/180.

Форма промежуточной аттестации: экзамен

13. Виды учебной работы

Pur vuoduoŭ podoru	Трудоемкость		
Вид учебной работы	Всего	По семестрам	

			3 семестр
Аудиторные занятия		48	48
	лекции	32	32
в том числе:	практические		
	лабораторные	16	16
Самостоятельная работа		96	96
в том числе: курсовая работа (проект)			
Форма промежуточной аттестации (экзамен –час.)		36	36
Итого:		180	180

13.1. Содержание разделов дисциплины

Nº			Реализация
п/п			раздела
	Наименование раздела	Содержание раздела дисциплины	дисциплины с
	дисциплины	о одоржание раздола длединини.	помощью
			онлайн-курса,
			ЭУМК
	1	. Лекции	Онлайн курс
1.1	Основные понятия теории	Линейная алгебра, линейные системы,	"Цифровая
	линейных систем.	нелинейные системы, устойчивость	обработка
1.2	Метод наименьших	Классический МНК, рекурсивный МНК,	сигналов",
	квадратов.	фильтр Винера	https://edu.vsu.ru
1.3	Фильтр Калмана и его	Дискретный фильтр Калмана, основная и	/course/view.php
	ообщения.	альтернативные вормы записи. H\infty	?id=10496
		фильтрю	
	3. Лабораторныеработы		
3.1	Основные понятия теории	Линейная алгебра, линейные системы,	
	линейных систем.	нелинейные системы, устойчивость	
3.2	Метод наименьших	Классический МНК, рекурсивный МНК,	
	квадратов.	фильтр Винера	
3.3	Фильтр Калмана и его	Дискретный фильтр Калмана, основная и	
	ообщения.	альтернативные вормы записи. H\infty	
		фильтрю	

13.2. Темы (разделы) дисциплины и виды занятий

Nº	Наимонование веспела	Виды занятий (часов)						
п/ п	Наименование раздела дисциплины	Лекции	Лабораторные	Практические	Самостоятельная работа	Всего		
1	Основные понятия теории линейных систем.	12	6		32	50		
2	Метод наименьших квадратов.	12	6		32	50		
3	Фильтр Калмана и его ообщения.	8	4		32	44		
	Итого:	32	16		96	144		

14. Методические указания для обучающихся по освоению дисциплины

Дисциплина реализуется по тематическому принципу, каждая тема представляет собой завершенный раздел курса. Темы с кодировкой X.X.1 относятся к базовому (обязательному) блоку

для обучения. На первом занятии студент получает информацию для доступа к комплексу учебнометодических материалов.

Лекционные занятия посвящены рассмотрению теоретических основ дисциплины: вводятся основные понятия, изучаются базовые технологии, разбираются основные процессы работы с большими данными. Лабораторные работы предназначены для формирования умений и навыков, закрепленных компетенций по ОПОП. Они организовываются в виде выполнения отдельных заданий. По окончании изучения дисциплины проводится тестирование.

Самостоятельная работа студентов включает в себя проработку учебного материала лекций, разбор заданий лабораторных работ, подготовку к экзамену. Для успешного освоения дисциплины рекомендуется подробно конспектировать лекционный материал, просматривать презентации по соответствующей теме, чтобы систематизировать изучаемый материал, выполнять задания лабораторных работ.

Промежуточная аттестация по результатам обучения проводится в форме экзамена, контролирующего освоение ключевых положений дисциплины, составляющих основу знаний по дисциплине.

При использовании дистанционных образовательных технологий и электронного обучения следует выполнять все указания преподавателя по работе на LMS-платформе, своевременно подключаться к online-занятиям, соблюдать рекомендации по организации самостоятельной работы.

15. Учебно-методическое и информационное обеспечение дисциплины

(список литературы оформляется в соответствии с требованиями ГОСТ и используется общая сквозная нумерация для всех видов источников)

а) основная литература:

№ п/п	Источник
1	Бехтин, Ю. С. Конспект лекций по математическому моделированию объектов и систем управления: учебное пособие / Ю. С. Бехтин. — Рязань: РГРТУ, 2023. — 192 с. — ISBN 978-5-7722-0396-5. — Текст: электронный // Лань: электронно-библиотечная система. — URL: https://e.lanbook.com/book/439664 (дата обращения: 10.04.2025). — Режим доступа: для авториз. пользователей.
2	Вагин, Д. В. Оценивание параметров в обратных задачах : учебное пособие / Д. В. Вагин. — Новосибирск : НГТУ, 2019. — 48 с. — ISBN 978-5-7782-3940-1. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/152269 (дата обращения: 10.04.2025). — Режим доступа: для авториз. пользователей.
3	Гетманов, В. Г. Цифровая обработка сигналов: учебное пособие / В. Г. Гетманов. — 2-е изд. — Москва: НИЯУ МИФИ, 2010. — 232 с. — ISBN 978-5-7262-1304-0. — Текст: электронный // Лань: электронно-библиотечная система. — URL: https://e.lanbook.com/book/75740 (дата обращения: 10.04.2025). — Режим доступа: для авториз. пользователей.

б) дополнительная литература:

№ п/п	Источник
4	Статистические методы исследований: учебно-методическое пособие / составители Д. А. Габеева [и др.]. — Улан-Удэ: БГУ, 2022. — 138 с. — ISBN 978-5-9793-1799-1. — Текст: электронный // Лань: электронно-библиотечная система. — URL: https://e.lanbook.com/book/336353 (дата обращения: 10.04.2025). — Режим доступа: для авториз. пользователей.
5	М Пасечников, И.И.Цифровая обработка сигналов: учебное пособие / И.И.Пасечников. — Тамбов: ТГУ им. Г.Р.Державина, 2019. — 156 с. — ISBN 978-5-00078-261-3. — Текст: электронный // Лань: электронно-библиотечная система. — URL: https://e.lanbook.com/book/137567 (дата обращения: 10.04.2025). — Режим доступа: для авториз. пользователей.

в) информационные электронно-образовательные ресурсы:

№ п/п	Источник
6	Электронный каталог Научной библиотеки Воронежского государственного университета. – http://www.lib.vsu.ru/
7	ЭБС «Издательство Лань» http://e.lanbook.com/

16. Перечень учебно-методического обеспечения для самостоятельной работы (учебно-методические рекомендации, пособия, задачники, методические указания по выполнению практических (контрольных) работ и др.)

Для самостоятельной подготовки обучающийся пользуется конспектами лекций и литературой по тематике лекционного материала, заданий лабораторных работ.

Самостоятельная работа обучающегося должна включать подготовку к тестированию, лабораторным занятиям и подготовку к промежуточной аттестации. Для обеспечения самостоятельной работы студентов в электронном курсе дисциплины на образовательном портале «Электронный университет ВГУ» сформирован учебно-методический комплекс, который включает в себя: программу курса, учебные пособия и справочные материалы, методические указания по выполнению лабораторных работ. Студенты получают доступ к данным материалам на первом занятии по дисциплине.

17. Образовательные технологии, используемые при реализации учебной дисциплины, включая дистанционные образовательные технологии (ДОТ, электронное обучение (ЭО), смешанное обучение):

При реализации дисциплины используются модульно-рейтинговая и личностноориентированные технологии обучения (ориентированные на индивидуальность студента, компьютерные и коммуникационные технологии). В рамках дисциплины предусмотрены следующие виды лекций: информационная, лекция-визуализация, лекция с применением обратной связи.

Дисциплина реализуется с применением электронного обучения и дистанционных образовательных технологий, для организации самостоятельной работы обучающихся используется онлайн-курс, размещенный на платформе Электронного университета ВГУ (LMS moodle), а также другие Интернет-ресурсы, приведенные в п.15в

18. Материально-техническое обеспечение дисциплины:

Учебная аудитория для проведения практических занятий: специализированная мебель, персональные компьютеры для индивидуальной работы.

OC Windows 8 (10), интернет-браузер (Google Chrome, Mozilla Firefox), Microsoft Visual Studio Community Edition

19. Оценочные средства для проведения текущей и промежуточной аттестаций

Порядок оценки освоения обучающимися учебного материала определяется содержанием следующих разделов дисциплины:

Nº п/п	Наименование раздела дисциплины (модуля)	Компетен ция(и)	Индикатор(ы) достижения компетенции	Оценочные средства	
1.	Основные понятия теории линейных систем.	ОПК-1.1	ОПК-1.1	КИМы для проведения текущей аттестации Задания для лабораторных работ	
2.	Метод наименьших квадратов.	ОПК-1.2	ОПК-1.2		
3.	Фильтр Калмана и его ообщения.	ОПК-1.3	ОПК-1.3		
	Промежуточна форма контроля—_		КИМы для проведения итоговой аттестации		

20. Типовые оценочные средства и методические материалы, определяющие процедуры оценивания

Оценка знаний, умений и навыков, характеризующая этапы формирования компетенций в рамках изучения дисциплины осуществляется в ходе текущей и промежуточной аттестаций.

Текущая аттестация проводится в соответствии с Положением о текущей аттестации обучающихся по программам высшего образования Воронежского государственного университета.

Текущая аттестация проводится в формах: устного опроса; защиты лабораторных работ, выполнения контрольных работ.

Промежуточная аттестация проводится в соответствии с Положением о промежуточной аттестации обучающихся по программам высшего образования. Промежуточная аттестация по итогам освоения дисциплины проводится в форме зачета с оценкой и экзамена. Для получения положительной итоговой оценки необходимо выполнение всех лабораторных и контрольных работ.

20.1 Текущий контроль успеваемости

Контроль успеваемости по дисциплине осуществляется с помощью лабораторных и контрольных работ.

Текущая аттестация проводится на занятии одновременно во всей учебной группе в виде теста в электронной образовательной среде «Электронный университет ВГУ», адрес курса — "Цифровая обработка сигналов" https://edu.vsu.ru/course/view.php?id=10496, адрес теста текущей аттестации — https://edu.vsu.ru/mod/quiz/view.php?id=1195047 Тест составляется из материалов ФОСа, формируется системой автоматически путём добавления случайных вопросов, количество которых соответствует имеющимся образцам билетов. Большая часть вопросов проверяется автоматически, проверки преподавателем с ручным оцениванием требуют только отдельные вопросы, представленные в форме эссе. Ограничение по времени на каждую попытку — 1 час 30 минут

Примеры лабораторных работ

- 1. МНК оценка набора неизвестных по набору измерений, линейная задача.
 - а. Общее условие для вариантов задач: для интервала наблюдения $t \in [0,T]$ и наборов измерений в моменты $t_i = h \cdot i, \, h = 0.01, \, i = \overline{1,n}$
 - і. построить графики зависимостей $\Delta_{x1}(n), \Delta_{x2}(n), \sigma_{x1}(n), \sigma_{x2}(n)$, где Δ ошибка по конкретной выборке, σ СКО по выборке, $n=\overline{10,200}$.
 - іі. построить график зависимости числа обусловленности $\mu(H(n))$
 - b. Варианты задач
 - і. Линейная аппроксимация переменные $x=(x_1,x_2)^T$ функция $y(t)=x_1+x_2t$ измерения $z_i=y(t_i)+\alpha t^2+\xi_i$, где ξ независимые равноточные погрешности.
 - іі. Кубическая аппроксимация переменные $x=(x_1,x_2,x_3)^T$ функция $y(t)=x_1+x_2t+x_3t^2$ измерения $z_i=y(t_i)+\alpha\cos(2L\pi t\,/\,T)+\xi_i$, где ξ независимые равноточные погрешности, L параметр.
 - iii. Аппроксимация

переменные
$$x=(x_1,x_2)^T$$
 функция $y(t)=x_1+x_2\ln(1+t)$ измерения $z_i=y(t_i)+\alpha t^2+\xi_i$, где ξ - независимые равноточные погрешности.

iv. Аппроксимация переменные $x = (x_1, x_2)^T$

функция
$$y(t) = x_1 + x_2 \frac{1}{1+t}$$

измерения $z_i=y(t_i)+\alpha t^2+\xi_i$, где ξ - независимые равноточные погрешности.

v. Аппроксимация

переменные
$$x = (x_1, x_2)^T$$

функция
$$y(t) = x_1 + x_2 \sqrt{1+t}$$

измерения $z_i=y(t_i)+\alpha t^2+\xi_i$, где ξ - независимые равноточные погрешности.

vi. Аппроксимация

переменные
$$x = (x_1, x_2)^T$$

функция
$$y(t) = x_1 + x_2 \sqrt{1 + t^2}$$

измерения $z_i=y(t_i)+\alpha t^2+\xi_i$, где ξ - независимые равноточные погрешности.

vii. Аппроксимация

переменные
$$x = (x_1, x_2)^T$$

функция
$$y(t) = x_1 + x_2 \frac{1}{\sqrt{1+t}}$$

измерения $z_i=y(t_i)+\alpha t^2+\xi_i$, где ξ - независимые равноточные погрешности.

viii. Аппроксимация

переменные
$$x = (A_1, B_1)^T$$

функция
$$y(t) = A_1 \cos(2\pi t / T) + A_2 \sin(2\pi t / T)$$

измерения $z_i=y(t_i)+\alpha t+\xi_i$, где ξ - независимые равноточные погрешности.

іх. Аппроксимация

переменные
$$x = (A_1, A_2, B_1, B_2)^T$$

функция

$$y(t) = A_1 \cos(2\pi t \, / \, T) + B_1 \sin(2\pi t \, / \, T) + A_2 \cos(2(2\pi t \, / \, T)) + B_2 \sin(2(2\pi t \, / \, T))$$
 измерения $z_i = y(t_i) + \alpha t + \xi_i$, где ξ - независимые равноточные погрешности.

х. Аппроксимация

переменные
$$x = (x_1, x_2)^T$$

функция
$$y(t) = x_1 \cos(2\pi t / T) + x_2 \ln(t+1)$$

измерения $z_i = y(t_i) + \alpha t + \xi_i$, где ξ - независимые равноточные погрешности.

хі. Аппроксимация

переменные
$$x = (x_1, x_2)^T$$

функция
$$y(t) = x_1 \sin^2(2\pi t / T) + x_2 / (t+1)$$

измерения $z_i=y(t_i)+\alpha t+\xi_i$, где ξ - независимые равноточные погрешности.

хіі. Аппроксимация

переменные
$$x = (x_1, x_2)^T$$

функция
$$y(t) = x_1 / \sqrt{1 + t^2} + x_2 \sin(2\pi t / T)$$

измерения $z_i=y(t_i)+\alpha t+\xi_i$, где ξ - независимые равноточные погрешности.

xiii. Аппроксимация

переменные
$$x = (x_1, x_2)^T$$

функция
$$y(t) = x_1 \sqrt{1 + 2t} + x_2 \cos(2\pi t^2 / T)$$

измерения $z_i=y(t_i)+\alpha t+\xi_i$, где ξ - независимые равноточные погрешности.

xiv. переменные $x = (x_1, x_2)^T$

функция
$$y(t) = x_1 / \sqrt{1+t} + x_2 \sqrt{1+t}$$

измерения $z_i=y(t_i)+\alpha t+\xi_i$, где ξ - независимые равноточные погрешности.

xv. переменные $x = (x_1, x_2)^T$

функция
$$y(t) = x_1 / \sqrt{1+t} + x_2 \sin(4\pi\sqrt{1+t} / T)$$

измерения $z_i=y(t_i)+\alpha t+\xi_i$, где ξ - независимые равноточные погрешности.

xvi. переменные $x = (x_1, x_2)^T$

функция
$$y(t) = x_1 e^{t/T} + x_2 \sqrt{1+t}$$

измерения $z_i=y(t_i)+\alpha t+\xi_i$, где ξ - независимые равноточные погрешности.

xvii. переменные $x = (x_1, x_2)^T$

функция
$$y(t) = x_1 e^{\sin(2\pi t/T)} + x_2 e^{\cos(2\pi t/T)}$$

измерения $z_i=y(t_i)+\alpha t+\xi_i$, где ξ - независимые равноточные погрешности.

2. Фильтр Калмана для скалярной переменной

переменная x

измерения $z_i = x + \xi_i$, где ξ - независимые равноточные измерения.

- 3. Фильтры для задач пункта 1.
 - а. Реализовать фильтр Калмана.
 - b. Фильтр с постоянными коэффициентами как фильтр Калмана с постоянной матрицей P = P(100).
 - с. Сравнить работу фильтров а и b.
- 4. МНК оценка набора неизвестных по набору измерений, нелинейная задача. Варианты:

- i. переменные $x = (x_1, x_2)^T$ функция $y(t) = x_1 t + x_2 \sqrt{t} + x_1 x_2$ измерения $z_i = y(t_i) + \xi_i$
- іі. переменные $x = (x_1, x_2)^T$ функция $y(t) = \sin(x_1 t) + x_2 t$ измерения $z_i = y(t_i) + \xi_i$
- ііі. переменные $x = (x_1, x_2)^T$ функция $y(t) = \sin(x_1 + x_2 t / T)$ измерения $z_i = y(t_i) + \xi_i$
- iv. переменные $x = (x_1, x_2)^T$ функция $y(t) = \log_{10}(x_1 t) + x_2 t$ измерения $z_i = y(t_i) + \xi_i$
- v. переменные $x = (x_1, x_2)^T$ функция $y(t) = x_1 t + x_2^2 t$ измерения $z_i = y(t_i) + \xi_i$
- vi. переменные $x=(x_1,x_2)^T$ функция $y(t)=x_1+x_2t+x_1x_2(t+1)^2$ измерения $z_i=y(t_i)+\xi_i$
- vii. переменные $x=(x_1,\mathbf{x}_2)^T$ функция $y(t)=x_1+\cos(x_2t)$ измерения $z_i=y(t_i)+\xi_i$
- viii. переменные $x=(x_1,x_2)^T$ функция $y(t)=x_1\ln(1+t)+x_2t+\sqrt{x_1x_2}$ измерения $z_i=y(t_i)+\xi_i$
- іх. переменные $x=(x_1,x_2)^T$ функция $y(t)=x_1^2t+x_2\sqrt{t}+x_1x_2$ измерения $z_i=y(t_i)+\xi_i$
- х. переменные $x=(x_1,x_2)^T$ функция $y(t)=x_1^2\cos(t)+x_2\sqrt{t}+x_1x_2$ измерения $z_i=y(t_i)+\xi_i$
- xi. переменные $x=(x_1,x_2)^T$ функция $y(t)=x_1+\sin(x_1t)+\cos(x_2t)$ измерения $z_i=y(t_i)+\xi_i$
- хіі. переменные $x=(x_1,x_2)^T$ функция $y(t)=x_1^2+x_2^2$ измерения $z_i=y(t_i)+\xi_i$

хііі. переменные
$$x=(x_1,x_2)^T$$
 функция $y(t)=\sqrt{x_1^2+x_2^2}$ измерения $z_i=y(t_i)+\xi_i$ хіv. переменные $x=(x_1,x_2)^T$ функция $y(t)=x_1^2\cos(t)+x_2^2(1+\sin(t))$ измерения $z_i=y(t_i)+\xi_i$

20.2 Промежуточная аттестация

Промежуточная аттестация по дисциплине осуществляется с помощью следующих оценочных средств: вопросы к экзамену.

Вопросы к экзамену

- 1. Линейные и нелинейные системы. Линеаризация.
- 2. Устойчивость линейных систем.
- 3. Оценивание константы методом наименьших квадратов.
- 4. Метод наименьших квадратов для линейных независимых равноточных измерений.
- 5. Метод наименьших квадратов для линейных измерений общего вида.
- 6. Метод наименьших квадратов для нелинейных измерений.
- 7. Рекурсивный метод наименьших квадратов.
- 8. Прогнозирование вектора состояния и ковариационной матрицы.
- Дискретный фильтр Калмана.
 Альтернативная формулировка фильтра Калмана.
- 11. Обобщение фильтра Калмана на случай коррелированных шумов.
- 12. Оптимальное сглаживание в закрепленной точке,
- 13. Оптимальное сглаживание с постоянным запаздыванием.
- 14. Применение фильтра Калмана для случая нелинейной модели прогноза состояний.
- 15. Применение фильтра Калмана для случая нелинейных измерений.

Для оценивания результатов обучения на экзамене используется 4-балльная шала: «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».

Соотношение показателей, критериев и шкалы оценивания результатов обучения.

	Уровень	
Критерии оценивания компетенций	сформирован	Шкала оценок
	ности	
	компетенций	
Отличное знание теоретического материала, правильное и	Повышенный	Отлично
эффективное решение задачи, правильные ответы на тестовые	уровень	
вопросы.		
Должны быть выполнены ВСЕ лабораторные работы		
Хорошее знание теоретического материала, в целом правильное	Базовый	Хорошо
решение задачи.	уровень	,
НО: допускает незначительные ошибки в решении задачи.	,	
Неправильный ответ на тест.		
ИЛИ: выполнены все показатели повышенного уровня, но не		
зачтена одна задача.		
Решение задачи не доведено до конца или недостаточное знание	Пороговый	Удовлетвори-
теоретического материала, ошибки в тестах Неоптимальное	уровень	тельно
решение задачи и недостаточное владение теоретическим		

материалом. ИЛИ: выполнены все показатели базового уровня, но по дисциплине не зачтены более одной задачи.		
Задача не решена или серьезные пробелы в знании	_	Неудовлетвори-
теоретического материала (с незнанием могут быть связаны и		тельно
грубые ошибки в ответе на тестовые вопросы)		

Задания ФОС

Вопросы с вариантами ответов

- 1. Выборочное среднее это
 - а. отношение суммы всех измеренных значений показателя к величине выборки
 - b. среднее значение квадратов отклонений отдельных его значений от среднего выборочного.
 - с. корень квадратный из выборочной дисперсии

Ответ: а

- 2. Выборочная дисперсия это
 - а. отношение суммы всех измеренных значений показателя к величине выборки
 - b. среднее значение квадратов отклонений отдельных его значений от среднего выборочного.
 - корень квадратный из дисперсии

Ответ: b

- 3. Среднее квадратическое отклонение это
 - а. отношение суммы всех измеренных значений показателя к величине выборки
 - b. среднее значение квадратов отклонений отдельных его значений от среднего выборочного.
 - с. корень квадратный из дисперсии

Ответ: с

- 4. Прямое измерение некоторой величины это
 - а. измерение, при котором значение величины измеряется непосредственно
 - b. измерение, при котором измеряется значения величин, связанных с измеряемой величиной известной зависимостью

Ответ: а

- 5. Косвенное измерение некоторой величины это
 - а. измерение, при котором значение величины измеряется непосредственно
 - b. измерение, при котором измеряется значения величин, связанных с измеряемой величиной известной зависимостью

Ответ: b

- 6. Метод наименьших квадратов позволяет подобрать
 - а. параметры некоторой функции так, чтобы сумма квадратов разностей измерений и аналитических данных была минимальной
 - b. вид некоторой аналитической функции, среднее значение которой совпадает с выборочным средним измерений
 - с. функцию так, чтобы ее квадрат совпадал с выборочным срелним измерений

Ответ: а

- Составляющую погрешности измерений, остающуюся постоянной при повторных измерениях одной и той же величины называют
 - а. случайной ошибкой
 - b. аномальной ошибкой
 - с. систематической ошибкой

Ответ: с

- 8. Редко появляющуюся и резко отличающуюся по величине от прочих погрешность измерений называют
 - а. случайной ошибкой
 - b. аномальной ошибкой
 - . систематической ошибкой

Ответ: b

9. Изменяющуюся случайным образом при повторных измерениях одной и той же величины погрешность а. случайной ошибкой b. аномальной ошибкой с. систематической ошибкой Ответ: а 10. Фильтр Калмана применяется а. только для систем с коэффициентами, зависящими от времени b. только для систем с постоянными коэффициентами с. для произвольных динамических систем Ответ: с Открытые задания. 1. Как называется отношение суммы всех измеренных значений показателя к величине выборки (два слова)? Ответ: выборочное среднее 2. Как называется среднее значение квадратов отклонений отдельных его значений от среднего выборочного (два слова)? Ответ: выборочная дисперсия 3. Как называется корень квадратный из выборочной дисперсии (сокращение)? Ответ: СКО 4. Как называется измерение, при котором измеряется непосредственно значение измеряемой величины (одно слово)? Ответ: прямое Как называется измерение, при котором измеряется значения величин, связанных с измеряемой величиной известной зависимостью (одно слово)? Ответ: косвенное 6. Как называется реализация метода максимального правдоподобия для случая, когда погрешности

измерений независимы и распределены по нормальному закону (сокращение)?

Ответ: МНК

7. Как называется составляющая погрешности измерений, остающаяся постоянной при повторных измерениях одной и той же величины (одно слово)?

Ответ: систематическая

8. Как называется составляющая погрешности измерений, редко появляющаяся и резко отличающаяся по величине от прочих (одно слово)?

Ответ: аномальная

9. Как называется составляющая погрешности измерений, изменяющаяся случайным образом при повторных измерениях одной и той же величины (одно слово)?

Ответ: случайная

10. Как называется фильтр, используемый для оценки метода наименьших квадратов параметров произвольных динамических систем (одно слово)?

Ответ: Калмана

Критерии и шкалы оценивания заданий ФОС:

Для оценивания выполнения заданий используется балльная шкала:

1) закрытые задания (тестовые с вариантами ответов, средний уровень сложности):

- 1 балл указан верный ответ;
- 0 баллов указан неверный ответ (полностью или частично неверный).

2) открытые задания (тестовые с кратким текстовым ответом, повышенный уровень сложности):

- 2 балла указан верный ответ;
- 0 баллов указан неверный ответ (полностью или частично неверный).